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We study the formation of subwavelength solitons in binary metal-dielectric lattices. We show that the
transverse modulation of the lattice constant breaks the fundamental plasmonic band and suppresses the discrete
diffraction of surface plasmon waves. New types of plasmonic solitons are found, and their characteristics are
analyzed. We also demonstrate the existence of photonic-plasmonic vector solitons and elucidate their propagation
properties. © 2015 Optical Society of America
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Periodic photonic structures, e.g., photonic crystals and
optical waveguide arrays (lattices), have been consid-
ered as an excellent platform to achieve efficient control
on the light flow. These discontinuous environments give
rise to abundant optical dynamics that only exist in the
discrete systems. Typical discrete optical effects, such as
diffraction management [1], Bloch oscillations [2], and
dynamical localization [3], have been theoretically and
experimentally demonstrated. In nonlinear lattices, types
of discrete optical solitons have also been revealed [4,5],
including surface solitons [6,7], gap solitons [8–10], and
vector solitons [11–13].
Although discrete optics has been under investigation

for many years, only recently the advance of nanofabrica-
tion techniques pushed the study toward subwavelength
scale systems. A particularly appealing example are
plasmonic lattices, in which new phenomena, including
negative coupling [14–18], reversed diffraction relation
[15–18], and subwavelength light dynamical localization
[19], have been discovered. More importantly, the use
of plasmonic structures makes it possible to overcome
the optical diffraction limit. It was thus suggested that lat-
tice solitons canbe supportedwith a characteristic dimen-
sion well below the light wavelength, providing important
opportunities for the nanoscale all-optical manipulations
[15–18,20–22]. However, due to the strong tunneling of
plasmonic waves across the lattices, a giant nonlinear re-
fractive index is usually required by a deeply localized
wave packet to counteract the transverse diffraction,
which might hinder the experimental realization of such
subwavelength entities.
In this Letter,we report the effect of diffraction suppres-

sion given rise by a transverse binary modulation on plas-
monic lattices and study its influence on the properties of
plasmonic solitons. Light dynamics in binary photonic
structures has received much attention during the past
years due to its fundamental interest in different branches
of optics [23–25], amongwhich of particular interest is the
generation of binary solitons, which exhibit unique prop-
erties in comparison with conventional discrete solitons
[26–31]. Up to now, binary solitons have only been consid-
ered in diffraction-limited dielectric systems, in which
light propagation can be properly described by scalar
equations under the paraxial approximation. The approxi-
mation, however, is no longer valid for subwavelength
beams since their vectorial field naturemust be taken into

account [5]. From this point, we extent the study into
nanoscale systems by solving the full Maxwell equations
(MEs) in a dissipative nonlinear plasmonic lattice. We
demonstrate how the binarization influences the plas-
monic band-gap spectrum and the associated nonlinear
modes. As a result of diffraction suppression, the modes
exhibit compact confinement under a significantly re-
duced nonlinearity level.We find that the proposed setting
supports two types of photonic-plasmonic vector solitons,
in which the strength of mutual trapping is decided by
the originating band of the plasmonic mode.

We consider light propagating in an array of metal-
dielectric slits, as depicted in Fig. 1(a), where nanoscale
dielectric layers with alternative widths of d1 and d2 are
separated by metallic layers with a fixed width of
dm � 50 nm. The period of the lattice, along x axis, is
hence p � d1 � d2 � 2dm, while light travels along z axis.
We assume a Kerr-type nonlinearity for the dielectric
refractive index as nd � n0 � δn � n0 � n2jEj2, where
n0 is the linear refractive index and n2 the self-focusing
(n2 > 0) or self-defocusing (n2 < 0) nonlinearity coeffi-
cient. The permittivity of metal (silver) is εm �
−129� 3.28i at the operation wavelength of λ �
1550 nm [32].

To analyze the diffraction property of the present lat-
tice, we start by solving MEs in the linear case (n2 � 0),
where the propagation equations for TM-polarized waves
(Ey � Hx � Hz � 0) can be readily described by [15]:
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Here ω � 2πc∕λ is the light angular frequency; εr�x� is the
spatial modulation on the relative permittivity, with
εr � εm in metal and εr � εd � n2

d in dielectric media.
Assuming Bloch modes in the form �Ex;Hy� �
�A�x�; B�x��ei�βz−ωt�, with β being the Bloch wave vector
and �A�x� p�; B�x� p�� � �A�x�; B�x��eikxp, from Eqs. (1)
and (2), we can calculate the transmission spectrum for
linear TM modes. The transmission spectrum for TE
modes (Ex � Ez � Hy � 0) can be analogously obtained
using the TE-based propagation equations, despite the
fact that only the bands associated with fundamental
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symmetric TM mode (referring to Ex) can survive in the
deep-subwavelength scale.
Figure 1(b) shows the band-gap structure for TM

modes with d1 � 200 nm and d2 � 100 nm. For compari-
son, the fundamental band for a uniform lattice with the
same period is also illustrated (dashed-dotted curves).
One can see that, as a direct consequence of the trans-
verse modulation, a transmission gap emerges and sep-
arates the fundamental band into two sub-bands (here
denoted as “upper” and “lower” band, respectively). Note
that for the given parameters, bands associated with
higher-order modes have been well cut-off. A similar sce-
nario of band splitting was also encountered in Ref. [33]
through tuning the coupling strength across metal slits
and was qualitatively described under the paraxial-
model. As an important feature in our scheme, guided
modes are trapped by a binary-type potential provided
by the alternate dielectric width, which leads to a selec-
tive concentration of the field amplitude in either wide or
narrow waveguides, characterized by its originating
band. One can see that as the ratio of d1 to d2 increases,
both the sub-bands become less steep, and the width of
the gap grows, indicating a decrease of the diffraction co-
efficient −∂2β∕∂k2x. In Fig. 1(c), we plot the variation of
diffraction coefficients (at kx � 0) with d2, where d1 is
fixed as 200 nm. Over five times diffraction suppression

is observed for both the sub-bands as d2 changes from
200 nm (uniform lattice) to 20 nm. This result is further
proven by direct propagation simulations in linear
lattices with a single-site excitation, as illustrated in
Figs. 1(d)–1(f), where the lattice ratio is chosen as
d1∕d2 � 1, 4/3 and 2, respectively, and light is input from
the central narrow waveguide. The diffraction length
clearly increases in the deep-modulated lattices, showing
that the energy exchange across the lattice period has
been significantly weakened in this case.

We now analyze the nonlinear version of the binary lat-
tice with jn2j � 3.6 × 10−21 m2∕V2 and seek for spatially
localized solutions of Eqs. (1) and (2) in the form

Ex�x; z; t� � u�x�ei�βz−ωt� (3)

Hy�x; z; t� � v�x�ei�βz−ωt�. (4)

Substitution of Eqs. (3) and (4) into the MEs leads to a set
of linear equations for the field distribution u�x� and v�x�,
which can be solved with a self-consistent method
[11,15]. We find that, for each sign of n2, two categories
of solitons are supported: the first category [Type-i and -
iv, see Fig. 2(a)] resides in the semi-infinite gaps and is
analogous to the fundamental modes in uniform lattices,
whereas the second category (Type-ii and -iii), generating
inside the gap, can only be found under the binary con-
figuration. The existence of these solitons in band-gap
spectrum can be characterized by their power, P �
�1∕2� R Re�ExH�

y�dx, versus soliton propagation constant
β. Figure 2(a) shows that the newly generated gap modes
directly bifurcate from the linear propagation bands and
penetrate into the deep gap region as the nonlinearity
(soliton power) increases. However, in a reality consid-
eration, their existence domain will actually be restricted
by the experimentally achievable level of δn. For the case
of a moderate nonlinear index of jδnj � 0.005, the gap
soliton carries power of 329 W/μm for the self-defocusing
nonlinearity (Type-ii), and a higher value of 858 W/μm for
the self-focusing nonlinearity (Type-iii).

One typical property of the binary plasmonic solitons
is that for the solitons bifurcating from the upper band,
energy concentrates mainly in the narrow waveguides,
while for those bifurcating from lower band, most energy
localizes in the wide waveguides. As expected, solitons
at kx � 0 and kx � π∕p exhibit in-phase and out-of-phase
patterns, respectively, along the neighboring periods [see
Figs. 2(b)–2(e)]. On the other hand, at the interface of
each neighboring wide-narrow waveguides, a π (0) phase
shift can be found for the Type-i (iv) plasmonic solitons,
which is in contrast to the dielectric case and can be
attributed to the negative coupling in plasmonic lattices.
Numerical calculations also verify that soliton profiles
are not obviously influenced by the imaginary part of
metal permittivity if it is much smaller than the real part,
which holds in our case.

To characterize the localization degree of the above non-
linear modes, the effective soliton diameter is introduced

by D �
�����������������������������������������������������������������������������������������R
x2�jExj2 � jEzj2�dx∕

R �jExj2 � jEzj2�dx
q

. As

an example, Fig. 2(d) compares the dependence
of D on δn for the Type-i binary solitons and the

Fig. 1. (a) Sketch of the present binary plasmonic lattice.
(b) Real (solid curves) and imaginary (dashed curves) parts
of the propagation constant β vs. kx, for n0 � 1.5, d1 �
200 nm, d2 � 100 nm. Blue curves: upper band, red curves:
lower band, dashed–dotted curves: real part of fundamental
band for an uniform lattice with d1 � d2 � 150 nm. (c) Diffrac-
tion coefficient vs. d2, for d1 � 200 nm. (d)-(f) Linear propaga-
tion in plasmonic lattice with central-waveguide excitation,
where d1 � 200 nm and (d) d2 � 200 nm, (e) d2 � 150 nm,
(f) d2 � 100 nm.
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corresponding uniform solitons (d1 � d2 � 150 nm). We
find that the requirement on nonlinearity to form a sub-
wavelength soliton is considerably reduced under the
binary geometry, due to the diminished discrete diffrac-
tion. For instance, to realize a deep-localization of
D � 0.25λ, δn drops from 0.032 to 0.007, while the
corresponding power decreases tenfold from 3.75 ×
103 W∕μm to 383 W/μm. This expands the opportunity
for practical use of such subwavelength solitons as only
few nonlinear materials allow δn on the order of 10−2

[34]. To gain a clearer insight into how the modulation
depth influences the soliton size, we further examine
the D dependence of Type-i solitons on the ratio of
d1∕d2, with d1 � d2 being fixed to be 300 nm [Fig. 2(e)].
One sees that, for d1∕d2 ≥ 8∕7, the soliton size shrinks
rapidly as the ratio grows, with most energy being com-
pressed into the central (narrow) waveguide. The slight
increase of D at small ratio can be understood by the
energy transportation from wide waveguides to the
next-to-center narrow waveguides under the shallow
modulation. Note that although using dielectric material

with higher linear refractive-index can serve as an alter-
native way to compress soliton size to some extent, the
accompanied drawback of doing that is a significant en-
hancement of the absorption loss, due to the increased
imaginary part of soliton propagation constant. In our
present case, the Type-i and Type-iv solitons feature
the shortest (26 μm) and the longest (79 μm) propaga-
tion length, respectively, evaluated by PL � 1∕�2 Im�β��.
The loss can be entirely compensated by applying opti-
cal gain in the dielectric layers. For example, lossless
propagation of the Type-i soliton requires a gain of
308 cm−1, which can be easily achieved with dye mol-
ecules or quantum dots.

We now examine the soliton evolution by injecting
the calculated mode profiles into the corresponding
nonlinear lattices. The simulations are performed using
a FEM software package COMSOL Multiphysics. Repre-
sentative examples are given in Fig. 3, showing the propa-
gation of Type-i and Type-iii (gap) solitons. One can
observe the good maintenance of their profiles over tens
of micrometers, even if the realistic metallic loss is
present.

Finally, let us consider the formation of vector solitons
in such binary lattices. Specifically, the vector states are
searched as the combination of a TM plasmonic mode
interacting with a TE photonic mode, i.e., nd � n0�
δn � n0 � n2�jETMj2 � jETEj2�. The TM component orig-
inates from either the upper or lower band and accord-
ingly locates in the narrow or wide waveguides, whereas
the TE component, which has a cut-off frequency, can
only be supported by the wide waveguides. Therefore,
the fundamental TE mode does not experience band
splitting, but its diffraction coefficient is dramatically
reduced due to the binarization. Figure 4(a) shows the

Fig. 2. (a) Soliton power vs. propagation constant. The blue
(red) curves correspond to the self-focusing (self-defocusing)
nonlinearity. The circles represent solitons for jδnj � 0.005.
(b), (c) Normalized electric field profiles of the (b) Type-i,
(c) Type-ii, (d) Type-iii, and (e) Type-iv solitons, jδnj � 0.005.
(f) Soliton effective diameter vs. δn for Type-i binary solitons
and uniform solitons. In (a)–(f): d1 � 200 nm, d2 � 100 nm.
(g) Soliton effective diameter vs. d1∕d2 for Type-i solitons,
d1 � d2 � 300 nm, δn � 0.005.

Fig. 3. (a), (b) Propagation of Type-i soliton in (a) lossless or
(b) lossy plasmonic lattices. (c), (d) Propagation of Type-iii
soliton in (c) lossless or (d) lossy plasmonic lattices. The propa-
gation length is (a), (c) L � 100 μm, (b), (d) L � 50 μm.

Fig. 4. Normalized electric field profiles of vector
solitons for δnTM � δnTE � −0.005. The TM mode bifurcates
from (a) upper and (b) lower band. n0 � 2.5, d1 � 400 nm,
d2 � 200 nm.
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typical profile of vector solitons where the Type-ii TM
mode centering in the narrow waveguide possesses equal
intensity to the TE mode as δnTM � δnTE � −0.005. The
corresponding propagation dynamics is illustrated in
Figs. 5(a)–5(d). Interestingly, since the two components
occupy different channels of the same period and have
only small overlapping, switching off one of the compo-
nent (e.g., TE wave) does not noticeably impact the soli-
tary propagation of the other [see Fig. 5(c)]. This
indicates that nonlinear control of bi-polarized beams
can be simultaneously realized in the same spot of a
nanoscale lattice excluding remarkable cross-phase
modulation, which could find interesting applications
in photonic integrations.
On the other hand, conventional vector solitons can

also form between the fundamental TE mode and the
TM modes bifurcating from lower band, as depicted in
Fig. 4(b). In this case, both components have their maxi-
mum amplitude in the wide waveguide and thus create a
strong mutual trapping potential similar to the case in
uniform waveguide arrays. This is verified by the obser-
vation of their dynamic evolution [Figs. 5(e)–5(h)], which
shows that solitary propagation occurs only if both
the components exist. On the contrary, switching off
the TE component will totally destroy the stability of the
TM part, where significant diffraction comparable to
linear wave can be found [Fig. 5(g)].
In conclusion, we demonstrate significant diffraction

suppression and band splitting in modulated plasmonic
lattices. Compact solitons are found under a relatively
small nonlinearity level. We also reveal the existence
of photonic-plasmonic vector solitons in the present
lattices.

This work has been supported by the Deutsche
Forschungsgemeinschaft (DFG) via TRR142.
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Fig. 5. Propagation of vector solitons. (a), (b) Stationary
propagation of (a) TE mode and (b) TM mode of the soliton
shown in Fig. 4(a). (c) Evolution of TM mode when TE mode
are switched off. (d) The discrete diffraction of TM mode in lin-
ear lattice. (e)–(h) The same as (a)–(d) but for the vector soliton
shown in Fig. 4(b). The propagation length in all the panels is
L � 200 μm. The loss has been eliminated to clearly show the
evolution properties.
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